4=-16t^2+127

Simple and best practice solution for 4=-16t^2+127 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4=-16t^2+127 equation:



4=-16t^2+127
We move all terms to the left:
4-(-16t^2+127)=0
We get rid of parentheses
16t^2-127+4=0
We add all the numbers together, and all the variables
16t^2-123=0
a = 16; b = 0; c = -123;
Δ = b2-4ac
Δ = 02-4·16·(-123)
Δ = 7872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7872}=\sqrt{64*123}=\sqrt{64}*\sqrt{123}=8\sqrt{123}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{123}}{2*16}=\frac{0-8\sqrt{123}}{32} =-\frac{8\sqrt{123}}{32} =-\frac{\sqrt{123}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{123}}{2*16}=\frac{0+8\sqrt{123}}{32} =\frac{8\sqrt{123}}{32} =\frac{\sqrt{123}}{4} $

See similar equations:

| 8.75=1.75d | | 2/5x+10+3/5x=2x5 | | 7w-14w=-21 | | X+3+3x=-3x+4x+6 | | 3(x-3x)=2x-6 | | (6)/(25)x+0.21=0.306 | | 91=244-y | | -v+59=199 | | 57-x=225 | | 9x-7x+10=2 | | w+7.85=9.57 | | m+8=3m+2 | | 5(4x+9)-6x9=-8x+12 | | 7x+15-2=10x-3x+2 | | 3x-2-1×=10+1x-15 | | /9x-1=5/9x+2 | | x/4+2=5/6 | | -3.8t+4=4.4+-37 | | 41=-6-17x | | X(3x-4)=3(x^2+2x)+9 | | 14z-6=29z+9 | | 2x+2+2x=3+x+2 | | 6-c=8 | | 8a^2+4a+3=0 | | 25=3.41x^2 | | 16x×4x=12 | | N+5=19(n=19) | | s/5+25=2225 | | x+2(3x-6)-1=7(x-3)+7 | | 70=7v | | 48t=-16t^2+32t+48 | | -v+181=127 |

Equations solver categories